
Sébastien Mathier

www.excel-pratique.com/en

Selections :

We'll begin by creating a macro that selects the cell that we specifiy.

First open the editor and add a module :

In the module, type "sub selection" and press Enter.

You will notice that Excel has automatically filled in the end of this new procedure :

Sub selection()

End Sub

Now create a formula button to which you will associate this macro (it is empty for now) :

Complete your macro with this code :

Sub selection()

 'Select cell A8

 Range("A8").Select

End Sub

You can test this macro by clicking on your formula button, and you will see that cell A8 is now selected.

We will now edit the macro so that it selects cell A8 on the second worksheet :

Sub selection()

 'Activating of Sheet 2

 Sheets("Sheet2").Activate

 'Selecting of Cell A8

 Range("A8").Select

End Sub

Excel will now activate Sheet 2 and then select cell A8.

Note : the comments (text in green) will help you understand the macros in this course correctly.

Selecting different cells :

Sub selection()

 'Selecting A8 and C5

 Range("A8, C5").Select

End Sub

Selecting a range of cells :

Sub selection()

 'Selecting cells A1 to A8

 Range("A1:A8").Select

End Sub

Selecting a range of cells that has been renamed :

Sub selection()

 'Selecting cells from the "my_range" range

 Range("my_range").Select

End Sub

Selecting a cell by row and column number :

Sub selection()

 'Selecting the cell in row 8 and column 1

 Cells(8, 1).Select

End Sub

This method of selecting cells allows for more dynamic selections. It will be quite useful further along.

Here is a little example :

Sub selection()

 'Random selection of a cell from row 1 to 10 and column 1

 Cells(Int(Rnd * 10) + 1, 1).Select

 'Translation :

 'Cells([random_number_between_1_and_10], 1).Select

End Sub

In this case, the row number is : Int(Rnd * 10) + 1, or in other words : a number between 1 and 10 (there's no reason you

should learn this code at this point).

Moving a selection :

Sub selection()

 'Selecting a cell (described in relation to the cell that is currently active)

 ActiveCell.Offset(2, 1).Select

End Sub

Moving the selection box two rows down and one column to the right :

Selecting rows :

It is possible to select entire rows using the Range or Rows commands (the Rows command is of course specific to rows).

Sub selection()

 'Selecting rows 2 to 6

 Range("2:6").Select

End Sub

Sub selection()

 'Selecting rows 2 to 6

 Rows("2:6").Select

End Sub

Selecting columns :

As with rows, it is possible to select entire columns using the Range or Columns commands (the Columns command is of

course specific to columns).

Sub selection()

 'Selecting columns B to G

 Range("B:G").Select

End Sub

Sub selection()

 'Selecting columns B to G

 Columns("B:G").Select

End Sub

Properties :

In this exercise, we will write VBA code that modifies the content and appearance of cells and worksheets.

First open the editor, add a module, copy the macro below into it, and link it to a formula button :

Sub properties()

 'Incomplete Macro

 Range ("A8")

End Sub

We want to modify cell A8 at the beginning of this macro.

To display the list of possible things that can be associated with the Range object, add a period after Range ("A8") :

The editor will now display the various possibilities ...

In this first example, click on "Value" and then on the Tab key to validate your choice.

Sub properties()

 'Incomplete Macro

 Range("A8").Value

End Sub

In this case, the property, Value, represents the contents of the cell.

Next, we will assign the value 48 to cell A8 :

Sub properties()

 'A8 = 48

 Range("A8").Value = 48

 'Translation :

 'The value of cell A8 is equal to 48

End Sub

Then we will assign the value Sample text to cell A8 (important : the text must be within " ") :

Sub properties()

 'A8 = Sample text

 Range("A8").Value = "Sample text"

End Sub

In this case, we're going to modify cell A8 on the worksheet, the cell from which the procedure is actually launched (using

a formula button). If you create a second button like this on worksheet 2, it will modify cell A8 on that sheet (sheet 2).

To make it modify cell A8 on sheet 2 when you click the button on sheet 1, you have to add the following before Range :

Sheets("Name_of_the_sheet") or Sheets(Number_of_the_sheet).

Sub properties()

 'A8 on sheet 2 = Sample text

 Sheets("Sheet2").Range("A8").Value = "Sample text"

 'Or :

 'Sheets(2).Range("A8").Value = "Sample text"

End Sub

Just the same, if we wanted to modify cell A8 on sheet 2 of another open workbook, we have to add the following before

Sheets and Range : Workbooks("Name_of_the_file").

Sub properties()

 'A8 on sheet 2 of workbork 2 = Sample text

 Workbooks("Book2.xlsx").Sheets("Sheet2").Range("A8").Value = "Sample text"

End Sub

Although we used Value in these examples, you don't really need to use it, because if nothing else is specified, it will be

the value of the cell that is modified.

For example, these two lines would have the same effect :

Range("A8").Value = 48

Range("A8") = 48

Erase cell contents :

Sub properties()

 'Erase the contents of column A

 Range("A:A").ClearContents

End Sub

Text Formatting :

When you open Font., the list of properties that can be applied to text formatting will appear :

We'll explain in detail how to edit the colors on the next page ...

Formatting : change text size :

Sub properties()

 'Edit the size of text in cells A1 through A8

 Range("A1:A8").Font.Size = 18

End Sub

Formatting : make text bold :

Sub properties()

 'Make cells A1 through A8 bold

 Range("A1:A8").Font.Bold = True

End Sub

Bold = True means Characters will appear in bold = Yes.

To remove the "bold" formatting from text, all you have to do is replace "Yes" with "No", or in other words, "True" with

"False" :

Sub properties()

 'Remove "bold" formatting from cells A1 through A8

 Range("A1:A8").Font.Bold = False

End Sub

Formatting : italicize text :

Sub properties()

 'Italicize cells A1 through A8

 Range("A1:A8").Font.Italic = True

End Sub

Formatting : underline text :

Sub properties()

 'Underline cells A1 through A8

 Range("A1:A8").Font.Underline = True

End Sub

Formatting : Set font :

Sub properties()

 'Edit font in cells A1 through A8

 Range("A1:A8").Font.Name = "Arial"

End Sub

Add borders :

Sub properties()

 'Add a border to cells A1 to A8

 Range("A1:A8").Borders.Value = 1

 'Value = 0 => no border

End Sub

Change the formatting of currently selected cells :

Sub properties()

 'Add a border to selected cells

 Selection.Borders.Value = 1

End Sub

Change a worksheet's properties :

Sub properties()

 'Hide a worksheet

 Sheets("Sheet3").Visible = 0

 'Visible = -1 => cancels the effect

End Sub

Don't forget that we've only introduced a tiny minority of the possible customizations that can be done with VBA.

If the property that you are looking for isn't described in detail here, don't be afraid to look for it in the list of properties in Excel or

in Excel's own help files.

The macro recorder can also save you a lot of time if you don't know the name of a property. If you record the action that you

need, it will be easy to find the name of the property so that you can then use it in your own macro.

Change the value of a cell based on another cell :

In this case, we want A7 to take its value from A1 :

So we will tell A7 to take its value from A1, which would look like this :

Sub properties()

 'A7 = A1

 Range("A7") = Range("A1")

 'Or :

 'Range("A7").Value = Range("A1").Value

End Sub

If we only wanted to copy the text size from the other cell, the code would look like this :

Sub properties()

 Range("A7").Font.Size = Range("A1").Font.Size

End Sub

Anything on the left side of the = takes on the value of what is on the right side of the =.

Change the value of a cell based on its own value :

Now we're going to create a click counter.

Each time we click, the value of A1 will be incremented by 1:

Sub properties()

 'Click counter in A1

 Range("A1") = Range("A1") + 1

End Sub

Excel executes the code line by line, so these commentaries should help you understand the code itself :

'For example : before the code is executed, A1 has the value 0

Sub properties()

 'The button has been clicked, so the procedure is starting

 'For the moment, A1 still has the value 0

 'DURING the execution of the line immediately below, A1 still has the value 0

 Range("A1") = Range("A1") + 1 'And now the calculation is : New_value_of_A1 = 0 + 1

 'A1 has the value 1 only AFTER the execution of the line of code

End Sub

With :

This code makes it possible to set different properties of the active cell :

Sub properties()

 ActiveCell.Borders.Weight = 3

 ActiveCell.Font.Bold = True

 ActiveCell.Font.Size = 18

 ActiveCell.Font.Italic = True

 ActiveCell.Font.Name = "Arial"

End Sub

In this case, we can use With to avoid having to repeat ActiveCell.

Now you will see how With works:

Sub properties()

 'Beginning of instructions using command: WITH

 With ActiveCell

 .Borders.Weight = 3

 .Font.Bold = True

 .Font.Size = 18

 .Font.Italic = True

 .Font.Name = "Arial"

 'End of instructions using command: END WITH

 End With

End Sub

This way we don't have to repeat ActiveCell.

Although it isn't really necessary in this case, we could avoid repeating .Font, too, which would look like this :

Sub properties()

 With ActiveCell

 .Borders.Weight = 3

 With .Font

 .Bold = True

 .Size = 18

 .Italic = True

 .Name = "Arial"

 End With

 End With

End Sub

Colors :

Let's start by assigning a color to the text in A1.

After adding Font., we get this result :

There are two different ways that we can set the color : ColorIndex, which has 56 colors, or Color which makes it possible

to use any color at all.

ColorIndex :

Here you can see the 56 colors that are available through ColorIndex :

To set the color of our text to one of these 56, we should write :

Sub example()

 'Text color for A1 : green (Color num. 10)

 Range("A1").Font.ColorIndex = 10

End Sub

This code will give us the following result :

For versions of Excel lower than 2007 : using ColorIndex is preferable to using Color.

Color :

Here is a similar example in which we use Color :

Sub example()

 'Text color for A1 : RGB(50, 200, 100)

 Range("A1").Font.Color = RGB(50, 200, 100)

End Sub

In this case, the color is : RGB(50, 200, 100).

RGB stands for Red-Green-Blue, and the numerical values go from 0 to 255 for each color.

A few examples of colors so that you can understand this better :

RGB(0, 0, 0) : black

RGB(255, 255, 255) : white

RGB(255, 0, 0) : red

RGB(0, 255, 0) : green

RGB(0, 0, 255) : blue

Luckily, there are lots of easy ways to find the RGB values for colors. Here is a selection :

Choose the color that you want from this utility and just copy the three values into the RGB(red_value, green_value,

blue_value).

So to change our text color to the violet above, we should use the following code :

Sub example()

 'Text color for A1 : RGB(192, 24, 255)

 Range("A1").Font.Color = RGB(192, 24, 255)

End Sub

This code will produce the following result :

For versions of Excel lower than 2007 : the number of colors is limited (the closest available color to the RGB values will be used).

Add colored borders :

We will now create a macro that adds a border to the active cell using ActiveCell.

The border will be heavy and red :

Sub example()

 'Border weight

 ActiveCell.Borders.Weight = 4

 'Border color : red

 ActiveCell.Borders.Color = RGB(255, 0, 0)

End Sub

Result :

To apply this effect to many cells at once, we can use the Selection command:

Sub example()

 'Border weight

 Selection.Borders.Weight = 4

 'Border color : red

 Selection.Borders.Color = RGB(255, 0, 0)

End Sub

Add background color to the selected cells :

Sub example()

 'Add background color to the selected cells

 Selection.Interior.Color = RGB(174, 240, 194)

End Sub

Result :

Add color to the tab for a worksheet :

Sub example()

 'Add color to the tab for "Sheet1"

 Sheets("Sheet1").Tab.Color = RGB(255, 0, 0)

End Sub

Result :

© Excel-Pratique.com - PRIVATE USE ONLY

